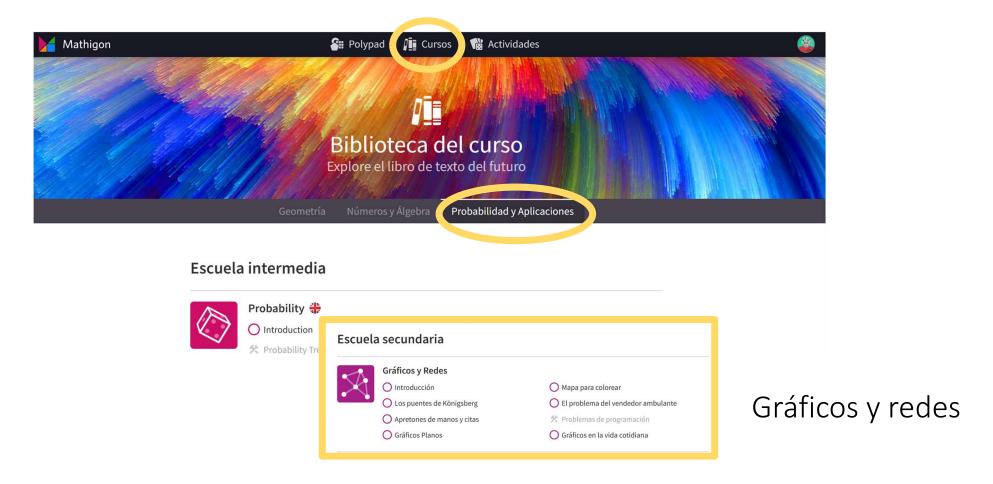
Para pensar en grafos

Problemas y aplicaciones relacionadas con grafos

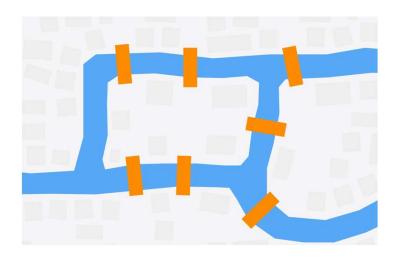
https://es.mathigon.org/course/graph-theory/introduction

1º Registro con un correo electrónico personal (el corporativo de tu centro puede estar bloqueado)


2º Panel de estudiante (icono de la arriba a la derecha)

3º Unirme a una clase Maestros y Padres (recuadro de la derecha)

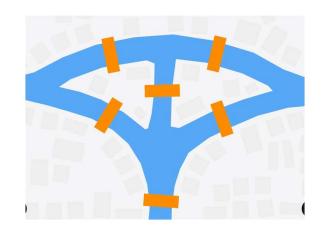
Código de clase: QCPA-P9PA

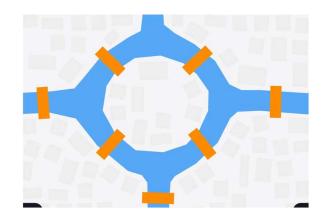


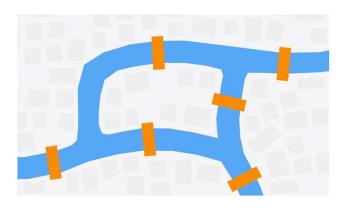
Mathigon

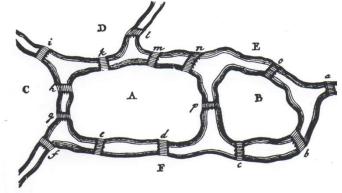
Probatinas (problema 1)

¿Se puede realizar un paseo de tal forma que cruce todos y cada uno de estos puentes una sola vez?




Otros ejemplos interactivos




Más difícil todavía (problema 2)

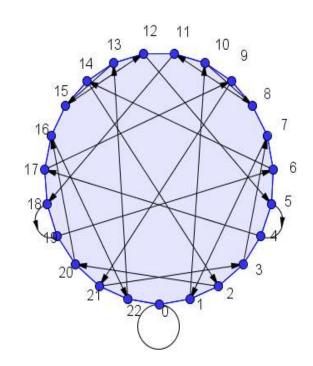
¿Podrías hacer lo mismo en estas ciudades?

Ejemplos interactivos

En nuestra ciudad

Hay camino para recorrer

todos los arcos en este grafo


¿Qué habría hecho Euler con Zaragoza?

Letra del dni = Grafo de divisibilidad

Se basa en el grafo de divisibilidad del 23

Cada resto tiene asignada una letra

TO DE LA VISIÓN	0	1	2	3	4	5	6	7	8	9	10	11
ETRA OCIADA	Т	R	W	Α	G	M	Y	F	Р	D	X	В

RESTO DE LA DIVISIÓN	12	13	14	15	16	17	18	19	20	21	22	
LETRA ASOCIADA	N	J	Z	S	Q	V	H	L	С	K	E	

En este enlace podéis encontrar los grafos de divisibilidad del 5, 7, 9, 11, 13, 17, 19 y 23

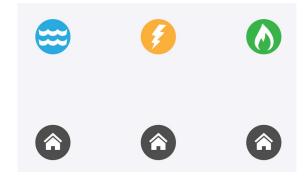
PROBLEMA 3- Apretones de manos

Al despedirse un grupo de amigos se dan apretones de manos todos con todos.

¿Cuántos apretones se dan en total?

PRINCIPIO DE INDUCCIÓN

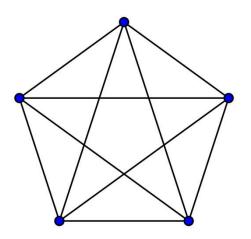
Sirve para demostrar propiedades, fórmulas, teoremas,... basados en números naturales.


- 1º Se comprueba para el caso n=1.
- 2º Se supone cierto para el caso n.
- 3º Se verifica la certeza para el caso n+1.

Vamos a aplicarlo para demostrar la fórmula de los apretones.

$$A_n = \frac{n \cdot (n-1)}{2}$$

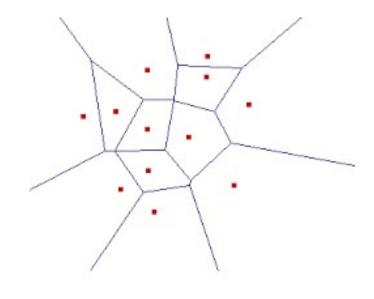
Lo puedes aplicar con la fórmula del número de diagonales de un polígono de n lados. $D_n = \frac{n \cdot (n-3)}{2}$


Tenemos tres casas que necesitan abastecimiento de agua, electricidad y gas. Teniendo en cuenta que los conductos están en el mismo plano y no pueden cruzarse, como los diseñarías. $(K_{3,3})$

Juego online: https://es.mathigon.org/course/graph-theory/planar-graphs

¿Es plano este grafo (K₅)?

Piensa en una resolución análoga a la del problema 4.


Grafos planos

¿Qué ocurre si en lugar de fijarme en vértices y aristas presto atención a las caras?

DIAGRAMA DE VORONOI

https://www.youtube.com/watch?v=YKTaqXmkZAE

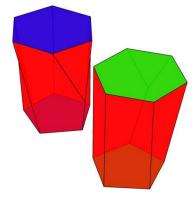
Grafos planos

Si al DIAGRAMA DE VORONOI le damos volumen con otros diagramas de Voronoi obtenemos:

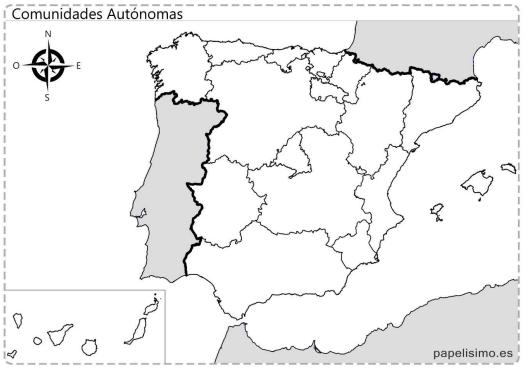
ESCUTOIDE

Nueva figura geométrica.

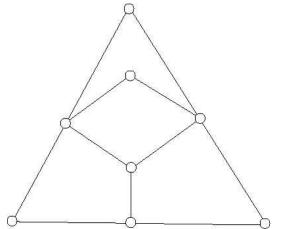
https://www.bbc.com/mundo/noticias-45019575


https://www.youtube.com/watch?v=bqiSA1dEnB4

https://www.youtube.com/watch?v=R7gOOxrP61Q

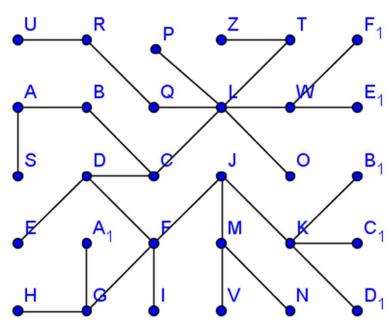


¿Podrías colorear el mapa de España con solo 4 colores?



https://es.mathigon.org/course/graph-theory/map-colouring

PROBLEMA DEL VIAJANTE:


Un viajante vive en uno de estos pueblos y cada día tiene que recorrer todos los demás. ¿Hay un camino que pase por todos una única vez?

https://es.mathigon.org/course/graph-theory/travelling-salesman

¿Es este grafo un árbol?

MUCHAS GRACIAS POR LA ATENCIÓN

ESPERO QUE OS HAYA GUSTADO

Carmen Fernández Grasa carmen.fernandez@cpilajota.org CPI La Jota. Zaragoza