

La inversión como estrategia de resolución de problemas

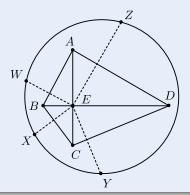
Juan Ángel Serrano de Rodrigo Departamento de Educación – Gobierno de Navarra Zaragoza, 3 de noviembre de 2023

Contenidos

- Para empezar... Un problema
- Inversión en el plano
- O Propiedades de la inversión
- 🗿 De nuevo el problema
- 5 Resolución del problema
- 💿 Algunos problemas más
- Cuándo invertir?

Problema (USAMO 1993/2).

Sea ABCD un cuadrilátero cuyas diagonales \overline{AC} y \overline{BD} son perpendiculares y se cortan en E. Demuestra que los puntos simétricos de E respecto de \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} son cocíclicos.

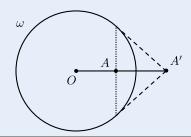


Inversión

Sea ω una circunferencia con centro O y radio r. una **inversión** respecto a ω es una transformación cumpliendo:

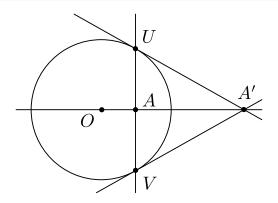
- El centro O de la circunferencia se envía a P_{∞} .
- El punto P_{∞} se envía a O.
- Cualquier otro punto A se envía al punto A' sobre OA tal que

$$OA \cdot OA' = r^2$$
.



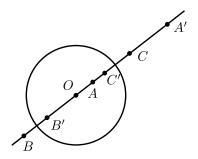
Propiedad 1.

Un punto $A \in \omega$ si y sólo si A = A'. En general, (A')' = A.



Propiedad 2.

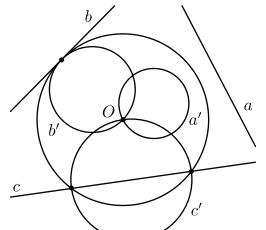
Una recta que pasa por O se transforma por inversión en la misma recta **Nota**: no punto a punto.



Propiedades de la inversión

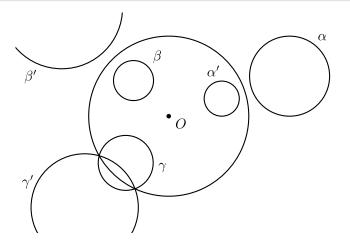
Propiedad 3.

El inverso de una recta a que no pasa por O es una circunferencia a' que pasa por O. Además, la recta por O perpendicular a a pasa por el centro de a'. El recíproco también se cumple.



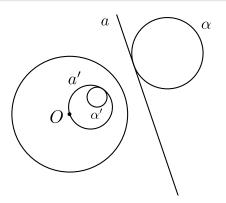
Propiedad 4.

El inverso de una circunferencia α que no pasa por O es otra circunferencia α' que tampoco pasa por O.



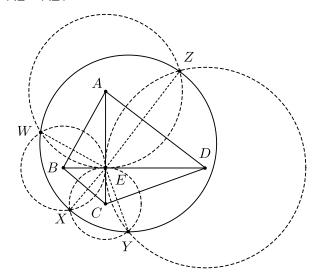
Propiedad 5.

La inversión preserva tangencias e intersecciones.



Nota: Si una circunferencia α se transforma en α' , el inverso del centro de α no es, en general, el centro de α' .

- ¿Dónde están las circunferencias?
- AW = AE = AZ.



Invertir... ¿Respecto a qué?

- Sea ABCD un cuadrilátero con diagonales perpendiculares en E.
- ② Sea ω_A una circunferencia con centro en A que pasa por E.
- \odot Se definen análogamente ω_B , ω_C , ω_D .
- Sea W la intersección de ω_A y ω_E distinta de E.
- Se definen análogamente X, Y, Z.
- Probar que WXYZ es cíclico.

Recordar

La inversión permite transformar circunferencias en rectas.

Invertimos respecto a una circunferencia centrada en E de radio 1.



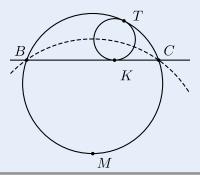
- WXYZ es cíclico $\iff W'X'Y'Z'$ es cíclico.
- ullet ¡Pero W'X'Y'Z' es un rectángulo, así que es obviamente cíclico!

Demostración.

- Definimos las circunferencias ω_A , ω_B , ω_C , ω_D con centros A, B, C, D que pasan por E.
- Los puntos W, X, Y, Z son las segundas intersecciones de ω_A y ω_B , etc.
- Consideramos una inversión con centro E. Dicha inversión transforma $\omega_A, \, \omega_B, \, \omega_C, \, \omega_D$ en cuatro rectas que son los lados de un rectángulo.
- Las imágenes de W, X, Y, Z forman un rectángulo, que en particular es cíclico. Transformando de vuelta, WXYZ es cíclico.
- No hace falta dar los detalles de las transformaciones.
- No todos los problemas que pueden resolverse así son tan fáciles.

Problema 2.

Sea BC una cuerda de una circunferencia Ω . Sea ω una circunferencia tangente a la cuerda \overline{BC} en K y tangente interior a Ω en T. Entonces el rayo TK pasa por el punto medio M del arco \overline{BC} que no contiene a T. Además, MC^2 es la potencia de M con respecto a ω .

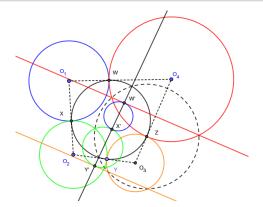


- Inversión respecto a la circunferencia Γ de centro M por B y C.
- La inversión intercambia BC con Ω .
- ullet La circunferencia ω se transforma en ella misma.
- Los puntos K y T son inversos el uno del otro.
- En particular, M, K, T son colineales y $MK \cdot MT = MC^2$.

Algunos problemas más

Problema 3.

Sean ω_1 , ω_2 , ω_3 y ω_4 cuatro circunferencias tangentes cíclicamente cada una a sus vecinas, de modo que ω_1 toca a ω_2 y ω_4 , ω_2 toca también a ω_3 , y esta última toca a ω_4 . Demuestra que los cuatro puntos de tangencia son cocíclicos.



Algunos problemas más

- Inversión con centro cualquiera de los puntos de tangencia.
- Las circunferencias tangentes en ese punto ⇒ rectas paralelas.
- Las otras dos circunferencias ⇒ dos circunferencias, cada una de ellas tangente a una de las rectas.
- Los puntos de tangencia X', Y', W' son colineales (¿Por qué?).

Demostración.

Utilizamos uno de los puntos de tangencia de las circunferencias ω_1 , ω_2 , ω_3 y ω_4 como centro de la inversión. Los otros tres puntos son obviamente cocíclicos. Sea Ω la circunferencia sobre la que se encuentran. Por la inversión, las imágenes de los tres puntos son colineales. Por tanto, la circunferencia Ω debe pasar por el centro de la inversión – el cuarto punto de tangencia.

Cuándo sí es conveniente invertir...

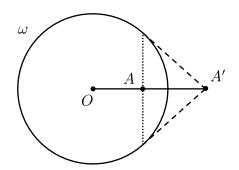
- Circunferencias y rectas tangentes entre sí.
- ¿Varias circunferencias pasan por O? Invierte con centro O.
- ¡Configuraciones que se invierten en sí mismas!

Cuándo no es conveniente invertir...

- Muchos ángulos dispersos...
- Problemas que involucran rectas, pero no muchas circunferencias.

Bibliografía y recursos

- H.S.M Coxeter, S. L. Greitzer, *Geometry Revisited*, MAA, 1967.
- E. Chen, Euclidean Geometry in Mathematical Olympiads, MAA, 2016.
- Cut the knot: https://www.cut-the-knot.org/



¡MUCHAS GRACIAS!

¿Cuestiones, dudas, sugerencias...?

jserrander@educacion.navarra.es